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Abstract
Starting from an antiferromagnetic Heisenberg Hamiltonian for the 15 spin-1/2
ions in V15, we construct an effective spin Hamiltonian involving eight low-
lying states (spin-1/2 and spin-3/2) coupled to a phonon bath. We numerically
solve the time-dependent Schrödinger equation of this system, and obtain the
magnetization as a function of temperature in a time-dependent magnetic field.
The magnetization exhibits unusual patterns of hysteresis and plateaus as the
field sweep rate and temperature are varied. The observed plateaus are not due
to quantum tunnelling but are a result of thermal averaging. Our results are in
good agreement with recent experimental observations.

The synthesis of high-nuclearity transition metal clusters such as Mn12, Fe8 and V15 [1] has
provided an impetus to the study of magnetism on the nanoscale. These transition metal clusters
are basically isolated transition metal complexes involving multi-dentate ligands; the chemical
pathway between the metal ions in the transition metal complex dictates the nature of exchange
interactions. The complex interplay of the topology of exchange interactions, magnetic
dipolar interactions and spin–lattice coupling has yielded a rich physics on the nanoscale
which includes quantum tunnelling, quantum phase interference and quantum coherence [2,3].
Quantum resonance tunnelling is characterized by the observation of discrete steps or plateaus
in the magnetic hysteresis loops at low temperatures. The signature of quantum interference is
seen in the variation of the tunnel splitting as a function of the azimuthal angle of the transverse
field for tunnelling between Ms = −10 and 10 − n states in molecular magnets with ground
state spin-10 [4]. Quantum coherence–decoherence studies are important from the stand point
of application of these systems in quantum computations [5].

There have been several models proposed to understand these phenomena [6]. Quantum
hysteresis and interference have largely been studied by using an effective spin Hamiltonian
with dipolar interactions with a time varying external magnetic field. The time evolution of the
states of the system are carried out within a master-equation approach [7]. The decoherence
phenomena has been studied by using a simple two-state model in a transverse magnetic
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Figure 1. Schematic exchange interactions in a V15 cluster.
There is no direct exchange interaction amongst the triangle
spins. Interactions not shown explicitly can be generated
from the C3 symmetry of the system.

field [8]. Even though most of these clusters contain a fairly small number of metal ions,
the spin on the metal ion, at least in the case of Fe8 and Mn12, is fairly large; a full quantum
mechanical study of these systems is difficult because of the large Fock space dimensionalities
of 1.69 and 100 million respectively. However, the V15 cluster is far more amenable to a
rigorous quantum mechanical analysis because of the much smaller Fock space (215 ∼ 33 000
dimensional) spanned by the unpaired spins of the system. A quantitative study of these
systems requires at least the low-lying states of the full spin-Hamiltonian to be evolved in
time quantum mechanically as the external magnetic field is ramped with time (as is done in
experiments). In this paper, we study the magnetization of V15 by following its evolution as
a function of a time-dependent magnetic field at different temperatures. The low-lying states
are obtained by solving the exchange Hamiltonian corresponding to all the spins of the system.
A spin–phonon interaction is then introduced in the Hamiltonian. We thermally average the
magnetization over the low-lying states after each of these states is independently evolved. We
find that this model reproduces most of the experimental features found in the magnetization
studies of V15 [9], without invoking the concept of a ‘phonon bottleneck’.

The schematic structure of V15 is shown in figure 1. Structural and related studies on the
cluster indicate that within each hexagon, there are three alternating exchanges J ≈ 800 K
which are the strongest in the system, and they define the energy scale of the problem. Besides,
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there are weaker exchange interactions between the spins involved in the strong exchange and
also with the triangle spins which lie between the hexagons. All the exchange interactions are
antiferromagnetic in nature. The exchange pathways and their strengths [9] are also shown
in figure 1. What is significant in the cluster is the fact that the spins in the triangle do not
experience direct exchange interactions of any significance. The exchange Hamiltonian of
the cluster is solved using a valence bond basis in each of the total spin subspaces, for all the
eigenvalues. It is found that two spin-1/2 states and a spin-3/2 state are split-off from the rest
of the spectrum by a gap of 0.005 156 J [1]. These eight states almost exclusively correspond
to the triangle spins and they are the only states which will make significant contributions to
sub-Kelvin properties. We therefore set up an effective Hamiltonian in the Fock space of the
three spins. We find that the lowest eight states of the exchange Hamiltonian of the full cluster
is exactly reproduced by the following effective Hamiltonian

Hsp−sp = εI + α(S1 · S2 + S2 · S3 + S3 · S1) (1)

where ε = −4.585 9096 and α = 0.003 4373 in units of the exchange J (see figure 1),
reproduces the low-lying eigenstates to numerical accuracy. The first term in equation (1)
denotes a constant shift in the energy levels of the three spins; this term plays no role in our
calculations involving thermal averages.

The direct spin–spin interaction terms permitted by the C3 symmetry are given by

Hdip = γ [(S3
+ + S3

−) + i(S3
+ − S3

−)]. (2)

We have also introduced a coupling between the spin states of the cluster and the phonons. The
spin–phonon interaction Hamiltonian which preserves theC3 symmetry is phenomenologically
given by [10]

Hsp–ph = q(b + b†)[(S2
+ + S2

−) + i(S2
+ − S2

−) + (S2
z − 1

3S
2)] (3)

where q is the spin–phonon coupling constant, b (b†) is the phonon annihilation (creation)
operator, and h̄ω is the phonon frequency. For simplicity, we have assumed a single phonon
mode although the molecule has various possible vibrational modes. The form of the interaction
in equation (3) means that the phonons couple only to states with spin-3/2, because simple
angular momentum considerations show that S2

+, S2
− and S2

z − S2/3 annihilate all the states
with spin-1/2. Although the phonon space is infinite dimensional, we have restricted the
dimensionality of the Fock space of the phonons to 15 considering the low temperatures of
interest. That is, we do not consider states with more than 14 phonons; the vibrational quantum
number j is restricted to a maximum value of 14.

The evolution of the magnetization as a function of the magnetic field has been studied
by using the total Hamiltonian Htotal, given by

Htotal = Hsp–sp +Hdip +Hsp–ph + h̄ω(b†b + 1/2) + hz(t)Sz + hx(t)Sx (4)

where we have assumed that besides an axial field hz(t), a small transverse field hx(t) could
also be present to account for any mismatch between the crystalline z-axis and the molecular
z-axis. The numerical method involves setting up the Hamiltonian matrix in the product basis of
the spin and phonon states |i, j〉, where |i〉 corresponds to one of the eight spin configurations
of the three spins, and j varies from 0 to 14, corresponding to the 15 phonon states retained in
the problem. The values we have assigned to the different parameters are γ = 10−3, q = 10−4

and h̄ω = 1.25 × 10−4, all in units of the exchange J (see figure 1). In figure 2, we show the
energy level ordering of the effective spin Hamiltonian and the effect of the magnetic field on
the eigenvalue spectrum. We also show the couplings between various states brought about
by the magnetic dipolar terms and the spin–phonon terms; note that the spin-1/2 and spin-3/2
states are not connected to each other by these terms.
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Figure 2. (a) Eigenstates of the effective spin Hamiltonian Hsp–sp , (b) eigenstates in the presence
of a moderate axial field. Arrows show the states connected by the dipolar terms and the transverse
field, (c) is the same as (b) but in a stronger field, (d) describes the effect of spin–phonon terms
(shown by arrows with broken lines) on (c).

To study the magnetization phenomena, we start with the direct product eigenstates of
Hsp−sp and h̄ω(b†b + 1/2), and independently evolve each of the 120 states ψij by using the
time evolution operator

ψ(t +�t) = e−iHtotal�t/h̄ψ(t). (5)

The evolution is carried out in small time steps by applying the evolution operator to the state
arrived at in the previous step. The magnetic field is changed step-wise in units of 0.015 T. At
each value of the magnetic field, the system is allowed to evolve for 300 time steps of size�t ,
before the field is changed to the next value. At every time step, the average magnetization
〈M(t)〉 is calculated as

〈M(t)〉 =
8∑

i=1

14∑

j=0

e−β[wi+hz(t)mi ]

Zspin

e−βh̄ω(j+1/2)

Zph
〈ψij (t)|Ŝz|ψij (t)〉 (6)
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Figure 3. Plot of magnetization versus axial field at different temperatures. Inset shows plateau
width as a function of temperature (full circles) falling off exponentially.

wherewi andmi are the eigenvalues and magnetizations of eigenstates ofHsp−sp, β = 1/kBT ,
Zph is the phonon partition function of h̄ω(b†b + 1/2), and Zspin is the partition function of
Hsp−sp in the presence of the axial magnetic field. Implicit in equation (6) is the important
assumption that at each value of the magnetic field, the system has sufficient time to reach
thermal equilibrium. The value of 〈M(t)〉 obtained by this method is approximately equal to
that obtained from a density matrix technique if the dipolar and spin–phonon coupling constants
γ and q are small, so that for each state |ψij 〉, the eigenvalue of the total Hamiltonian Ĥtot, in
a magnetic field hz(t) at any instant t , is close to the value of (wi + mihz(t) + (j + 1/2)h̄ω)
that we have used in the Boltzmann weight in equation (6).

In figure 3, we show the magnetization plots of the system for different temperatures.
We see that at low temperatures, the plateaus are very pronounced. The plateau width at
〈Sz〉 = −0.5 corresponds to 2.8 T at T = 0.1 K which is in good agreement with the
experimental value [9] assuming that J = 800 K. The literature [1, 9] estimates of the
exchange constants do not reproduce the experimental value of the field (2.82 T) at which the
magnetization jumps from 〈Sz〉 = −0.5 to 〈Sz〉 = −1.5. In figure 4, we have magnified the
region of the magnetic field at which this jump occurs for the three sets of values of the exchange
parameters. The sharpness of the transitions however is comparable in all the three cases.

Furthermore, we find that the plateau has vanished at a temperature of 0.9 K which is
also in agreement with the experimental value [9]. The plateau width is maximum at T = 0
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Figure 4. Magnetization versus magnetic field at T = 0.1 K in the neighbourhood of the transition
from 〈Sz〉 = −0.5 to −1.5 for (a) J = 800 K, J1 = 54 K, J2 = 160 K, (b) J = 800 K, J1 = 150 K,
J2 = 300 K [9], and (c) J = 756 K, J1 = 29 K, J2 = 179 K [1].

since thermal excitations cannot occur at that temperature. The inset of figure 3 shows the
temperature variation of the plateau width. We note that the plateau width falls off rapidly with
temperature, and an exponential fit toW = A exp (−T/%) gives the characteristic temperature
% to be 0.2 K, with A = 0.0070. This small value of % is because there are no large barriers
between the different magnetization states in this system, unlike the high spin molecular
magnets such as Mn12 [6].

Note that the jumps in the magnetization 〈Sz〉 in figure 3 occur at the field values 0T and
3T ; this is because at those field values, several spin states are degenerate. At H ∼ 0T , the
ground state is four-fold degenerate corresponding to two spin-1/2 states with Sz = ±1/2.
A finite magnetic field breaks the Sz = ±1/2 degeneracy. At T = 0, a state with only
one spin orientation is occupied, resulting in a jump in magnetization. At H ∼ 3T , the
Sz = −3/2 state crosses the Sz = −1/2 states leading to a second jump in the magnetization
at that magnetic field.

We also observe that when the field is swept more rapidly, there are additional plateaus
at intermediate values of magnetization. For example, in figure 5 the field sweep rate is
increased by a factor of five compared to figure 3, and we find a small plateau of width 0.03T
near H = 0.15T at a value of 〈Sz〉 = −0.375. This is because near that field, some of the
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Figure 5. Magnetization as a function of axial field for a faster sweep rate at three different
temperatures.

spin-3/2 states become degenerate in energy; subsequently, as the magnetic field is increased,
the system stays locked in some of those states if the sweep rate is too high. This plateau
vanishes on warming the system slightly.

We have also studied the effect of cycling the magnetic field. In figure 6, we show
the magnetization as a function of the field at different temperatures and sweep rates. It is
interesting to see that the system does not have either remnance or coercivity; all the hysteresis
plots pass through the origin. The effect of varying the rate of scanning the field is also
shown in figure 6. We find that as the scanning rate increases, the hysteresis in the plot of
magnetization versus field decreases, and the plateau feature is almost identical in both the
scanning directions. This could be because of the slow relaxation of the magnetization which
is indeed the reason why the plateaus occur in the first place. We also find that the transverse
field term does not affect any of our results significantly.

To summarize, we have derived an effective Hamiltonian from the exchange Hamiltonian
of the full V15 system. In the presence of a time varying magnetic field, the states of the effective
Hamiltonian are allowed to evolve under the influence of magnetic dipolar interactions and a
spin–phonon coupling. During the time evolution, the magnetization is followed as a function
of the applied magnetic field. The calculated M versus H plots show magnetization plateaus
at low temperatures. The width of the plateau at low temperature as well as the temperature
at which the plateau vanishes are in excellent agreement with experimental values. It is
also shown that the number of plateaus observed depends upon the scanning speed of the
magnetic field. When the magnetic field is cycled, the hysteresis plots pass through the origin
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Figure 6. Magnetization versus axial field for a full cycling of the field at different temperatures
and sweep rates.

indicating the absence of remnance and coercion. The hysteresis is pronounced for slow
scanning speeds. From our results, it appears that the magnetization plateaus in V15 is not a
consequence of quantum resonant tunnelling but is a result of thermal averaging. We also find
that the magnetization does not show any oscillation with time during evolution indicating the
absence of quantum tunnelling.
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